
ESD-TR-77-146

ESD AC ! [1ST

Cooy No / /
5—ENVIRONMENT

FOR PROGRAM DEVELOPMENT

Massachusetts Institute of Technology-
Laboratory for Computer Science (formerly Project MAC)
Cambridge, MA 02139

February 1977

Approved for Public Release;
Distribution Unlimited.

Prepared for

DEPUTY FOR COMMAND AND MANGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
HANSCOM AIR FORCE BASE, MA 01731

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY
1400 Wilson Boulevard
Arlington, VA 22209

AOAQHWSl

The views and conclusions contained in this document are those
of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied,
of the Advanced Research Projects Agency or the U.S. Government.

LEGAL NOTICE

When U. S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented

invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

This technical report has been reviewed and is approved for publication.

1
PAUL A. KARGER, Captain^ USAF
Techniques Engineering Division

^2M/
SCHELL, Lt Colonel, USAF

AD//System Security Program Manager

FOR THE COMMANDER

FRANK J. Efflk, Colonel, USAF
Director, Gomputer Systems Engineering
Deputy for Command & Management Systems

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

ESD-TR-77-f46

2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

A ROBUST ENVIRONMENT
FOR PROGRAM DEVELOPMENT

5. TYPE OF REPORT & PERIOD COVERED

S. PERFORMING ORG. REPORT NUMBER

MIT/LCS/TR-175
7. AUTHORS

Harold Jeffrey Goldberg

8. CONTRACT OR GRANT NUMBERS)

FI9628-74-C-0I93
ARPA Order No. 2641

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Massachusetts Institute of Technology
Laboratory for Computer Science (formerly Project MAC)
Cambridge, MA 02139

10. PROGRAM ELEMENT, PROJECT, TASK
AREA 4 WORK UNIT NUMBERS

A02 3

It. CONTROLLING OFFICE NAME AND ADDRESS

Deputy for Command and Management Systems
Electronic Systems Division
Hanscom AFB, MA 0l73r

12. REPORT DATE

February 1977
13. NUMBER OF PAGES

101
14. MONITORING AGENCY NAME & ADDRESSf// different from Controlling Office)

Defense Advanced Research Projects Agency
r400 WHson Boulevard
Arlington, VA 22209

15. SECURITY CLASS, (of this report)

UNCLASSIFIED

15a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

N/A
16. DISTRIBUTION STATEMENT (of this Report)

Approved for Public Release; Distribution Unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identity by block number)

Supervisor; Domains Command Routines Command Files
User Domains Control Routines Command Processor
Support Routines Signalling

20. ABSTRACT (Continue on reverse side II necessary and identify by block number)

This thesis examines the problems of debugging and preservation of
the user programming environment and proposes a scheme by which
the program development environment can be protected. In addition
the thesis identifies and discusses, in detail, environments that
are needed to control a user's process, and examines error signal-
ling mechanisms, particularly in their use in an environment like
the one proposed to solve the inter-procedure interference problem

DD FORM
1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

MIT/LCS/TR-175

A ROBUST ENVIRONMENT FOR PROGRAM DEVELOPMENT

HAROLD JEFFREY GOLDBERG

February 1977

This research was performed in the Computer Systems Research Division of the
M.I.T. Laboratory for Computer Science. It was sponsored in part by Honeywell
Information Systems Inc., and in part by the Air Force Information Systems
Technology Applications Office (ISTAO), and by the Advanced Research Projects
Agency (ARPA) of the Department of Defense under ARPA order No. 2641, which
was monitored by ISTAO under contract No. F19628-74-C-0193.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE
(formerly Project MAC)

CAMBRIDGE MASSACHUSETTS 02139

A ROBUST ENVIRONMENT FOR PROGRAM DEVELOPMENT *

by

Harold Jeffrey Goldberg

ABSTRACT

This thesis examines the problems of debugging and preservation of the
user programming environment and proposes a scheme by which the program
development environment can be protected.

Typically, designers of timeshared or multiprogrammed computer systems
only consider inter-user interference as a source of problems and do not worry
about what users do in their own environments. Thus, users can, by writing
incorrect programs, cause the destruction of the programming environment and
personal data bases. A protection scheme is proposed that satisfies the needs
of the user by employing a protection mechanism, rings, that allows the
program development environment to be protected from user written programs and
yet be outside of the supervisor. Having these programs outside the
supervisor satisfies the goals of creating a "security kernel", which is a
supervisor containing only security related programs.

The thesis presents a model of the user environment wherein the concept
of a "procedural package" is explained. The procedural package contains not
only the code for the procedure, but in addition, environment components
necessary for the proper execution of the procedure such as dynamic, static,
and allocate/free storage. The thesis describes the "inter-procedure
interference" problem in terms of the model and proposes an ideal solution
based on a domain architecture. Problems with the ideal solution are
presented and an alternate solution suggested.

In addition, the thesis identifies and discusses, in detail, environments
that are needed to control a user's process, and examines error signalling
mechanisms, particularly in their use in an environment like the one proposed
to solve the inter-procedure interference problem.

THESIS SUPERVISOR: David D. Clark
TITLE: Research Associate of Electrical Engineering and Computer Science

* This report reproduces a thesis of the same title submitted to the
Department of Electrical Engineering and Computer Science on January 21, 1977
in partial fulfillment of the requirements for the Degree of Master of
Science.

-3-

ACKNOWLEDGMENTS

I first want to apologize, in advance, to all those that I may have
forgotten to mention in this section, but richly deserve to be included.

I would like to thank...

...Dave Clark, my thesis supervisor, for his guidance from
conception of this research through writing of this thesis,
for his help in defining and discussing the issues and
providing structure and organization to the ideas presented in
this thesis, and finally, for his patience and quick
turnaround time in reading drafts.

...Jerry Saltzer for reading and commenting on a draft of this
thesis (and correcting my english) .

...Dave Reed for discussing topics in this thesis, especially
signalling, and discussing topics not in this thesis but that
attempted to keep me a well-rounded person.

...Doug Wells for discussing some of the issues in this thesis and
answering many implementation related questions about Multics
and the "right way" of programming.

...All members of CSR, especially Art Benjamin, Nancy Federman,
Harry Forsdick, Doug Hunt, Steve Kent, Al Luniewski, Warren
Montgomery, Karen Sollins, and those already mentioned above
for making life at CSR and M.I.T. an enjoyable and rewarding
experience.

This section would not be complete without special thanks to my
dear wife Esther, without whom this thesis, nor my graduate student
career at M.I.T., could ever have have been completed, and to my
parents, brothers, in-laws, and friends for their moral support and
encouragement throughout two and one half long years of graduate study.

This research was performed in the Computer Systems Research
Division of the M.I.T. Laboratory for Computer Science. It was
sponsored in part by Honeywell Information Systems Inc., and in part by
the Air Force Information Systems Technology Applications Office
(ISTAO), and by the Advanced Research Projects Agency (ARPA) of the
Department of Defense under ARPA order No. 2641, which was monitored by
ISTAO under contract No. F19628-74-C-0193.

-4-

To Esther,

who makes all the difference.

-5-

TABLE OF CONTENTS

ABSTRACT 3

ACKNOWLEDGMENTS 4

DEDICATION 5

TABLE OF CONTENTS 6

LIST OF FIGURES 8

1. Introduction 9

1.1 Motivation 10
1.2 Plan of the Thesis 12
1.3 Related Work 14

2. The Process Model and the User Domain 17

2.1 Supervisor and User Domains 18
2.2 Dissecting the User Domain 19
2.3 The Problem 22
2.4 An Ideal Solution 25

3. A New Model 29

3.1 Functional Components in the New Model 29
3.2 Deciding on a Protection Mechanism 33

4. A Closer Look at the Support Routines 39

4.1 Two Cases of Support Routines 39
4.2 Guidelines for Support Routine Coding 40
4.3 Examples 42

5. Command and Control Routines 49

5.1 Structure of Environments 49
5.1.1 Command Environment 51
5.1.2 Control Environment 53

5.2 Processing Commands 54
5.2.1 Text Substitution 56
5.2.2 Parameter Evaluation 56
5.2.3 Command Files 59
5.2.4 The Command Processor 60

5.3 Getting to the Control Environment 61
5.4 Implementation of Command and Control Environment 63

- 6 -

5.5 Protecting the Command and Control Environments . 63
5.6 Design Decisions Based on the Protection Scheme . 67

5.6.1 Command Processing Revisited 67
5.6.2 Command Processor Escape Mechanism 70

6. Signalling 73

6.1 Purpose of Signalling 74
6.2 A Model for Signalling 74
6.3 Extensions to Signalling 76
6.4 Signalling Problems 77
6.5 Multi-Ring Signalling 82

7. Implementation, Conclusions, and Future Research 87

7.1 Implementation 87
7.2 Conclusions 92
7.3 Areas for Future Research 93

Appendix A. Certification and Kernel Simplification 95

BIBLIOGRAPHY 97

- 7 -

LIST OF FIGURES

Figure 2.1 Supervisor/User Domains 19
Figure 2.2 Protected Procedure Package 26
Figure 3.1 Functional Boundaries 30
Figure 3.2 Proposed Structure 35
Figure 5.1 Command and Control Structure 50
Figure 5.2 Abbreviation Processing 57
Figure 5.3 Total Command Processing 58-
Figure 6.1 Sample Call Stack 79

- 8 -

Chapter One

Introduction

The need for increased efficiency in the use of large systems led

to the development of multiprogrammed systems. This led the way to the

development of interactive timesharing systems. Of major concern in the

design of these systems was the separation of users so that one user

could not affect the programs, data, or operation of others and yet

users could still be allowed controlled sharing. This concern evolved a

frame of mind which based system design decisions on whether or not a

user, by any action, could affect the system or another user.

Self-annihilation (of programs) was considered legal and permissible

under these rules as long as this could not affect the system security.

It is this "laissez faire" attitude towards user programs that is

dealt with in this thesis. Systems should provide some self-protection

mechanisms to help users detect and limit the scope of errors, thus

speeding up the development of programs. This thesis describes how to

accomplish this goal by employing a protection mechanism (rings) to

protect a "program execution environment", containing program support

functions, from user-written programs.

-9-

1.1 Motivation

As hardware costs come down, the cost of software begins to

dominate the cost of a computer based product. Helping the programmer

would therefore reduce software expense and project cost. Numerous

methods of helping a programmer write a correct program the first time

have come about and/or are being studied including high-level languages,

structured programming, module specification, and a programmer's

apprentice (see "Related Work" section). In the long run, current

research might pay off; but until that happens many programmers will

face the problem of debugging their software in the "old fashioned" way.

The proposed program execution environment will help programmers

catcli errors during testing and limit the scope of those errors. This

capability will undoubtedly speed up program development and thus reduce

software cost.

Unfortunately, programs are never completely bug free even after

years of development. Constant upgrading and changing patterns of use

may exercise portions of a program that were not considered important

and therefore not thoroughly tested at the time of the first writing.

To help in these situations a protected program execution

environment can be employed that would be safe from user program

modification and could notify the user immediately upon detection of an

-10-

error instead of letting the error propagate and cause more extensive

damage. This monitoring will be referred to as "guarded execution".

Program development and guarded execution justify the work done in

this thesis, in general. However, the actual motivating force that led

to this research was the Multics kernel design project being carried on

in the Computer Systems Research division of Project MAC at M.I.T.

(presently the M.I.T. Laboratory for Computer Science) [Schroeder 75].

Appendix A contains a brief discussion of that work and should be

reviewed if the reader is unfamiliar with the concepts. In summary,

certification of correctness of the security features of the supervisor

would be easier if the supervisor were made smaller. Modules unrelated

to security would be removed from the supervisor and placed in the user

domain. This increase in the number of support modules existing in the

user domain increases the fragility of the user domain and the possible

scope of damage that errors can cause there. Thus program development

becomes a more difficult task.

The combination of the requirements of certification and the

traditional "don't care" attitude of the systems developers (described

in the introduction) resulted in the research reported in this thesis.

-11-

1.2 Plan of the Thesis

The thesis proper begins in chapter 2 with the description of a

basic model of a process in a multiprogrammed timesharing system, in

which Supervisor/User modes are briefly discussed. The User domain is

then dissected into procedural packages containing basic environment

components (as opposed to functions) and the problems of access by the

wrong procedure to those components are discussed. Efficiency

considerations that led to the coalescing of distinct components into a

single object on a particular system are discussed and studied. How

this coalescing aggravates the problems of incorrect access to

environment components is explained.

An ideal solution to the inter-procedure interference problem is

proposed wherein each procedure would exist in its own protection domain

and could not affect any of the environment components of another

procedure. Some basic problems of complexity and efficiency of using

this approach are discussed.

A new model of the user domain based on functional units is then

described in chapter 3. The concept of support routines and command and

control routines are explained. A new, simpler solution to the

inter-procedure interference problem is proposed in which the support

routines are protected as a unit. A mechanism for implementing this new

proposal Is then discussed.

-12-

Chapter 4 takes a closer look at the support routines and offers

suggestions for their proper coding so that their protection is

facilitated. Examples of major modules that need not exist in the

supervisor and could benefit from protection in the user domain are

discussed.

In chapter 5 the programs that a user controls a process with, the

command and control routines, are studied in detail. Command line

processing and process control are discussed. The reason for protecting

these routines is explained and possible methods of protection are

considered, including a separate process "front end" approach.

Chapter 6 discusses error signalling mechanisms and their problems.

These problems can be ignored in a single domain implementation but must

be considered in order for a multi-domain environment (such as the one

proposed in this thesis) to work.

Finally, chapter 7 presents conclusions, a summary of results, and

comments about a test implementation. Possible areas for future

research are also discussed.

Appendix A contains a detailed discussion of certification and

explains why reducing the size of a system supervisor facilitates

verifying its correct operation.

-13-

1.3 Related Work.

This research was motivated by the kernel design work in the

Computer Systems Research division of Project MAC at MIT (now the

Laboratory for Computer Science). [Schroeder 75] discusses the CSR

kernel design project and the method of attack. [Janson 74] and

[Bratt 75] describe how programs responsible for dynamic linking and

namespace management, respectively, can be removed from, and thus

simplify the supervisor. [Montgomery 76b] discusses how process

creation can be partially removed from the supervisor thus aiding in the

simplification goals.

Many researchers are investigating techniques to prove programs

correct and/or help users write correct programs. [Parnas 72a]

describes module specification techniques. [Liskov 76] is developing a

language, CLU, which is thoroughly type-checked with hopes that it will

prevent (or reduce) programming errors and allow automatic program

verification. It allows the creation of extensible objects which are

manipulated by type managers or "CLUsters" and prevents all other

programs but the appropriate type managers from directly touching the

"insides" of the extended type object. [Hewitt] describes a

programmer's apprentice which should help a program writer avoid such

errors as incorrect number of parameters to subroutines and wrong types

of arguments, thus maintaining consistency of specifications, and answer

the programmer's questions about dependencies between modules.

-14-

There are many theses and papers related to the ideal solution

presented in chapter 2, which is basically a domain architecture.

[Dennis 64] and [Dennis and Van Horn 65] describe spheres of protection.

[Schroeder 72] describes the hardware that could support mutually

suspicious domains. [Redell 74] discusses type extension and revokable

capabilities. [Jones 73] describes capabilties in a very formal sense.

The concepts of command and control environments are discussed in

this thesis. The General Electric Mark II time-sharing [Montgomery 76a]

is an example of a system which contains these functions in supervisory

code which I claim is unnecessary given the proposed protected

environment within the user domain. [IBMCP] is an example of a system

that contains the control environment, but not the command processor,

within the supervisor. [TENEX] contains the command processing

functions coded as system calls while the program that accepts user

commands is in the user domain. [NSW] and [DCS] are examples of current

research that promote the approach of a front end processor.

Of course there is much literature on Multics but I have chosen

[Organick 72] for an overall description of concepts although the

details have changed somewhat, and [TR123] because of its extensive list

of references. [Schroeder and Saltzer 72] describe the ring hardware in

use on Multics today.

Debugging and maintaining the user's process is of prime

consideration in this thesis. Having a debugger protected from user

written code certainly helps in the)oh of debugging and guarantees that

-15-

some portion of the process is preserved despite user programming

errors. [IBMCP] has a primitive debugger in supervisory code that is

protected. The debugging system, "NURSE", described by Gould [Gould 75]

is more extensive than the IBM debugger, but it too is in the

supervisor. Yates' thesis [Yates 62] contains a proposal for a

protected debugger that would be an "administrative routine", which is

also in the supervisor. A better approach is found in [PSN25] and

[PSN26] which proposes to protect a debugger in the user domain using

user controlled base and bound registers on [CTSS] . This approach is

much like the ring structure proposed in this thesis.

-16-

Chapter Two

The Process Model and the User Domain

In order to describe more accurately the details of this research,

a model of a user's computation is needed. The model chosen was based

on the Multics system; however, there are not that many Multics specific

items in the model. Those items that are not present in a given system

can simply be ignored without loss of applicability. The model is

intended to reflect a typical process in a multiprogrammed computer

environment.

The term "process" appears throughout this thesis. The association

one should make with this word, while reading this thesis, is an active

agent, a processor (real or virtual, i.e. multiplexed), following a

sequence of instructions. The past, present, and future effects of the

instructions executed is a process. The terms "procedure" and "program"

are used interchangeably, as are the terms "parameter" and "argument".

-17-

2.1 Supervisor and User Domains

First the process is broken down into two scopes of access, or

"domains", namely "supervisor" and "user", as shown in figure 2.1. The

figure is intended to indicate that the access privileges of the user

domain are a subset of the privileges of the supervisor domain. The

access privileges of the supervisor include access to I/O channels and

devices, which may be controlled by a different means from data access.

(1) All interrupts and faults are directed to the supervisor domain so

that it may properly control the user domain and I/O. There may be one

or more real or virtual (multiplexed) processors executing the process,

but for simplicity only a single processor is assumed.

Now the user domain is examined, which is where the problem being

attacked exists.

(L) For example, Multics uses a privileged state bit in the processor to
allow execution of I/O instructions. PDP/ll's have no I/O instructions;
the device registers are addressed as memory locations.

-18-

I/O

Su perv^sor

rroce.dofc2.

Packages

F\c^ore 2.\ Superv\sor/Use.r Domams

2.2 Dissecting the User Domain

The user domain is considered to be the collection of procedures

that execute there. The code is not the only item that allows a

procedure to function, though. The description of the user domain will

consist of what environment is "seen" by programs that run in that

domain. The user domain is examined in this peculiar way so that the

program interference problem can more accurately and precisely be

described.

-19-

Programs are viewed as "packages" containing the code and

additional objects that are needed for execution. This section

identifies those objects that make up the environment necessary for most

program execution. Much of the environment has been established as

conventions, but these conventions are indeed necessary for the proper

execution of programs written in higher level languages. Only passive

objects are mentioned in this analysis. Functionality that exists

because of either user or system programs is simply and grossly

categorized as user programs accessible via call, and supervisory

programs accessible via gates (an abstract entity for supervisor calls) .

The passive objects that this research has identified are small in

number, but are intended to capture a particular view of the process

which will be examined shortly. The components are 1) dynamic storage,

2) allocate/free storage, 3) "own" storage, 4) parameter list, 5)

parameters, 6) linkage, and 7) databases.

The dynamic storage area is where blocks of storage are

automatically allocated each time a procedure in called, and

automatically freed when the procedure returns. The class of storage is

known as "automatic" in PL/I. Temporary work areas are typically

allocated in this area. The allocate/free area is where blocks of

storage are allocated and freed under direct program control. These

allocated blocks remain in use even after the procedure that performed

the allocation has returned. A typical use for this type of area is for

the allocation of I/O buffers and I/O access method control blocks (e.g.

-20-

the index of an ISAM file) . "Own" storage, or internal static, is

automatically allocated upon first entering a procedure and is not

usually released. The allocation may be implicit, since some systems

provide this storage class as a physical part of the executing program

(impure procedures). A typical use for this type of storage is for

saving information between program invocations, such as whether the

procedure has initialized a data base, or pointers to blocks of

Allocate/Free storage. (2)

The parameter list identifies arguments to the called procedure,

and may include descriptions of these arguments including type and

length information. The parameters themselves are typically located in

some storage external to the called procedure. A linkage section, or

transfer vector, is used to bind named objects to physical machine

addresses. Finally, the last component of the procedural package is the

collection of data bases that are in use by programs. On some systems

this component can be considered the open files for the program.

Note that only the parameters and databases are, or need to be,

external to the procedural package; the other components either should

exist only in the procedural package, or be copied in. In no case

should these other components be referenced by external procedures

unless explicitly passed as parameters. The violation of this maxim is

exactly the problem that this thesis examines in the next section.

(2) The compiler does not know the address of Allocate/Free blocks
because the programmer may allocate them in any procedure and pass
pointers around. The compiler, however, assumes that internal static is
allocated in a certain place, possibly pointed to by a register.

-21-

2.3 The Problem

The reason for discussing this particular breakdown of the program

execution environment is that implementation of the specified components

tend to cause unnecessary common mechanisms between procedures in the

user domain. For instance, the dynamic storage area is typically

implemented as a single object shared between programs - the "stack".

Usually the Allocate/Free area is a single area for all of the programs

in the user domain to share. Linkage is usually implemented as a single

common transfer vector for an entire collection of programs. On systems

where programs are kept pure, internal static is not part of the program

object module and is allocated in an area with all the other static

sections in the user domain. Parameter lists are typically allocated in

the dynamic storage area, causing further entaglement of objects. On

systems which have virtual memory (segmentation), every known segment is

a potential data base. (3) These examples of the concentration of

multiple objects into one object which is global, allows one procedure

to access another's "piece" of the object. This is possible because

access control usually extends only to individual objects and not to

sub-objects. Because of this, one faulty procedure can modify and

destroy another's dynamic, allocated, or static storage.

(3) A known segment is a file of which the address can be constructed.
On Multics, the address is a two-dimensional quantity (S,0). "S"
represents an index into an array of "open" files, and "0" is the offset
into the segment S. Hence an arbitrary value for S can select any of
the open, or known, segments.

-22-

This data concentration may result in unpredictable results of

tested and debugged programs. A process may be totally destroyed

because of one modified bit. Programs may reference the wrong block in

an allocated/freed, static, or linkage area. File access information

can be destroyed, causing jumbling and loss of records. Data bases may

be written instead of read. The stack may be overwritten or deleted.

Programs and linkage may be written over. For those systems (like

Multics) where gates are actual programs found by the normal linking

mechanism (as opposed to SVC type instructions) , destroying linkage can

prevent any further calls to the supervisor.

An example of the merging of unrelated small objects into one large

one with no specific access control to prevent erroneous access is found

in the current implementation of the Multics stack. In the original

Multics design, segments were supposed to contain only data requiring

identical access. This was not followed on Multics when the current

stack design is examined. Efficiency, related to reduced page faults,

caused the merging of unrelated data into one object. One segment was

used for all stack frames, and at the low end of the stack the infamous

"base of the stack" was designed.

This base of the stack contains many special environment

definitions including pointers to important entries in PL/I operators

(i.e. call, save, return, and stack manipulations), to the procedure to

do the signalling in that ring, and to the Linkage and Internal Static

-23-

Offset Tables, (4) to name a few. Again, these objects were all merged

simply for increased memory utilization.

Because of the merging of all the above areas into one segment

which was writeable, one bad stack, reference could destroy the entire

execution environment.

Until recently, linkage and internal static sections were always

combined into one static section. This allowed out of range references

to internal static to affect linkage of programs.

In order to prevent these types of errors from occurring, and

possibly to catch them as they occur (for debugging), it would be

reasonable to protect these elements of the execution environment which

are common mechanisms. There are in existance machines which prevent

this sort of wild access from occurring, but are limited to stack

references and a few data types [Organick 73]. Current research has

shown ways for preventing this type of behavior in general, (5) but they

are just not applied because of efficiency considerations. In the next

section an ideal solution and the problems with it will be discussed.

(4) The Linkage and Internal Static Offset Tables are used by procedures
to locate their linkage and internal static areas within the segments
containing all linkage and internal static areas.

(5) tnterpreters and extended type objects and type managers for
example.

-24-

2.4 An Ideal Solution

To prevent the type of interprocedure interference that could arise

due to sharing of environment components, a protection mechanism of some

kind is needed. This protection is required not only for the components

of the execution environment discussed in the previous section, but for

the actual code of the procedures as well. Ideally, the procedural

package concept would be enforced by the system; each procedure would

be housed in its own protection domain and be allowed to access only

objects that it required for operation. These objects might be

catalogued in a list which would quickly identify all those objects that

the program in that environment could ever reference. (6) Among those

objects would be the components of the execution environment. Only

required access to each component would be granted so that, for example,

only read access is allowed for linkage sections and only execute access

for object segments. Furthermore, the components would not be

accessible at all outside the program domain unless explicit permission

were given. This structure is depicted in figure 2.2.

There should be ways of adding and removing objects from the

"list". These addition and removal operations are necessary so that

blocks that are allocated and then freed would not be accessible to the

(6) This could lead to an easily implementable system given appropriate
hardware.

-25-

original allocator once they are freed, and so that parameters could be

passed for use, then removed from the "list" when the procedure

returned. These parameter capabilities are shown as dotted capabilities

in figure 2.2.

Capably
List

St4t\C
Capa\^l\t\cs

bst

Parameter* I

rarametxvtf^

r >^urc IX Protected ProCe^ove. Package,

-26-

There is some expense incurred when dealing with a system with this

architecture, however. Maintenance of the individual capability lists

for each domain requires an extra database for each program. With a

sufficiently large collection of programs (as on a typical large

system), this could involve many such objects. In addition, each

environment component would be a distinct object. Thus, the

implementation is faced with the management and storage of all these

objects that exist as independent entities. (7) During execution,

domain changing with every procedure call would undoubtedly be expensive

because dynamic capabilities would have to be stacked and maintained

[Schroeder 72]. Excessive paging overhead due to a new capability list

and environment components would also decrease efficiency. As pointed

out earlier in the Multics example, excessive paging overhead is in fact

what led to some of the problems being attacked in this thesis.

Returning to the original state of affairs just for the promise of

better debuggability is probably not sufficient motivation to reduce

performance.

Besides performance issues there may still be a problem in using a

program per domain system. Examining in detail how a user could create

and develop programs points out some problems that have to be overcome

if such a system is to be considered useable. In particular, consider

the set of privileges that have to be granted when a new program is

created. First, the source must be entered and edited, which requires

(7) Tliis problem has come to be known as the "small objects" problem.

-27-

that an "editor domain" have read and write access to the source. Then

a compiler must be able to read the source and write the object segment.

A debugger must be able to read and write the object segment (perhaps

only temporarily) so that code can be examined and breakpoints set.

All seems fine so far, but it is in the execution of the procedure

where the more complex access problems and controls come into view. The

new procedure must be given the privilege to call all the subroutines it

uses. Similarly, if it is called by another procedure, that other

procedure must be given the right to call it. All the support programs

(e.g. linker, dynamic area manager, etc.) must be given the appropriate

access so that they may operate on the parts of the domain that they are

intended to (linkage section, dynamic storage, etc.). Clearly, if users

had to establish all of these privileges manually, they simply would not

do it; and what good is a protection mechanism if it is not used?

To help in this problem one might decide that a group of programs

should be encapsulated together to alleviate some of the complexity of

establishing the new protection environment. One can, for example,

group "system routines" into classes of domains which require similar

access, thereby requiring only one access control term or capability for

each group. With appropriate constraints, it might even be possible to

reduce the overhead of procedural packages by having relatively few of

these groups. This approach is exactly what is considered in the next

chapter where problems and other useful properties of such a design is

discussed.

-28-

Chapter Three

A New Model

Because of the efficiency problems related to maintaining

independent protection domains for every procedure, the use of a

simpler, more efficient means of separation was investigated. In this

new approach, the user domain is viewed in a different light. Instead

of trying to separate and protect every user environment program from

every other, a separation by classes is considered. This new separation

divides the environment by functions rather than by components and a new

solution to the problems posed in the previous chapter, based on this

new division, is proposed.

3.1 Functional Components in the New Model

The basic idea of this new approach is to reexamine the user

process and functionally divide the programs in it. In figure 3.1 the

gross functionality boundaries are depicted. In this picture it is easy

to illustrate the goals of the supervisor simplification work discussed

in appendix A, that strongly motivated this research. This goal is

simply to move the user/supervisor boundary down to the resource sharing

and multiplexing functions. By examining the picture, the effect that

moving this boundary has on the size and complexity of the user domain

is clearly demonstrated. Moving the boundary places more functionality

-29-

Use<rUV,ttcfv

Ju^pcyrt

Rt^ooCcc ^ta*">t^/ftvU'<p\t*j<\ff'

Pre-Cert ^catx* feriNcl fte<>%* Go*^

 1

Uw

Su perv\c,or

Usw

Kernel'
*

in the user domain, thus increasing the harm that an unchecked program

error can cause. For the rest of this work it is assumed that the

user/supervisor boundary is in fact moved to the point established as a

goal for the supervisor simplification effort.

The user domain is considered to be broken down into three classes

of programs: command and control, support routines, and user programs.

The command and control programs are those programs that allow users to

control the execution of their processes (e.g. stop and start) and to

tell their processes what to do (i.e. what programs to run). These

programs are unlike any other programs in the user domain and are

-30-

therefore considered independently in a later chapter. Until then, the

command and control programs shall be ignored. Procedures that fall

into the support routine class are those that serve no other purpose but

to provide a more elegant abstract machine for the user programmer.

These procedures include stack, management, call - save - return macros,

Input/Output access methods, software for floating point support,

conversion routines, free storage management, dynamic linking, and

namespace management, to name a few. These procedures are usually

provided by the system itself. The user programs are those programs

written by the user to perform a desired task, and make extensive use of

the support routines.

Partitioning the user domain in this way allows the support

routines to be protected, as a group, from the user programs. It is

assumed that the support routines are tested and debugged, and seldom

change. Thus, a manual review of the support routines can verify that

they will not interfere with each other. Therefore, protecting the

support routines as a group should pose no additional problems.

The support routines are common routines, shared by the user

programs. A failing support routine would have a more widespread effect

than a single failing user program. Thus, protecting the support

routines is in fact protecting some of the common mechanisms of the user

domain.

-31-

Protection of the actual code is not the only thing that is wanted

though. Protecting those components of the user execution environment

discussed earlier so that the support routines can function

independently from the user programs is desired. The support routines

cannot be allowed to share those components with user programs.

However, because the correctness of the support routines can be assumed,

the support routines can be allowed to share the environment components

among themselves. In this way, breakage and therefore inefficiency in

memory utilization is held to a minimum above that of the original

combination of user and support routines. This compares favorably with

the ideal solution proposed in the previous chapter, where no such

sharing was possible. The "working set" [Denning 68], or number of

pages of memory required by a computation in this scheme would be a

maximum of twice the number required by the original, single environment

implementation. This is so because there are only two domains where the

pages can be and in each domain those pages can be as packed as they

were in the original implementation.

In summary, two environments have been created within the user

domain. The next step is to choose a protection mechanism for keeping

the environments separate. By examining the dependencies and

interactions between the two environments, a suitable mechanism can be

decided upon.

-32-

3.2 Deciding on a Protection Mechanism

The types of functions performed by the support routines are simple

and likely to be invoked often. With functions such as the call-return

sequence and stack management implemented as support routines, it would

clearly be impossible to have them exist in an independent address space

where some outside active agent performs the communication between the

two, since these functions are necessary to perform the communication.

Thus, a "distributed processing" approach involving parallel processes

is unfeasible.

Some form of linked address space between the two environments is

needed so memory can be shared. The support routines must be able to

manipulate elements of the user programs (stack, linkage, etc.). On the

other hand, it is desired to prevent programs from interfering with any

of the elements of the support environment. This type of nesting of

privileges very closely parallels the user/supervisor modes discussed

earlier.

At first, placing the support routines in the supervisor might be

considered. However, appendix A presents reasons why programs which are

not necessary for correct operation of the system should not be in the

supervisor. Recent research in system certification [Schroeder 75] has

crystallized these reasons. Appendix A contains a brief description of

this work.

-33-

However, besides certification there are very simple reasons for

not placing programs in the supervisor. These reasons have to do with

extendability and maintainability. Sophisticated users of Multics

greatly appreciate the ease with which they can change and replace

almost all parts of their execution environment. If the code were in

the supervisor a user dissastisfied with the particular implementation

would be unable to change it. Furthermore, bugs in the code would

require supervisor changes to correct, which is more often a harder job

than replacing user programs. A simpler supervisor is obviously more

easily maintained and upgraded, and can be more quickly learned by new

system support personnel.

This point has been reached by noting that the nested privileges

offered by the familiar user/supervisor modes would be useful for

protecting the support routines. But reasons for not actually making

use of this scheme have been pointed out. However, the concept of

"rings of protection" [Graham 68, Schroeder and Saltzer 72] can be used

here with much success.

Rings of protection, or more simply just rings, are a

generalization of the supervisor/user domains discussed earlier. Rings

are an ordered set of protection environments such that ring j has at

least as much access to data and programs in rings j + 1 through the

maximum ring number as each of the higher rings themselves do, but only

controlled access (call, read, or no access) to data and programs in

rings 0 through j - 1.

-34-

The domains of interest here are totally ordered in terms of access

privileges. Therefore, rings can be used for their separation. Thus,

for example, the supervisor can be put in ring 0, the user environment

in ring 2, and have the critical programs of the user execution

environment in ring 1. This proposed structure is shown in figure 3.2

below. The user support routines are protected from user programs in

the same way that the supervisor is, and yet are not part of the

supervisor.

Suptrxhsor

Suppovt

U*r Pi ro£ira^s
%

^^Wv^VV VVAJWWVN^AA/VVVVVVV/\AM^fMVrV*l

The significance of this last statement must be emphasized since it

is a major design goal of this research. In a correctly designed

system, the supervisor contains only those programs that enforce the

security of the system. Outside the supervisor, no code can do anything

-35-

to interfere with the supervisor or another user. So even though the

support routines are protected from the user written code, they are

outside the supervisor and thus cannot affect system security. This is

a major aid in assuring the correctness of the inter user protection

mechanisms or system security.

From the user standpoint, having the support routines outside the

supervisor is beneficial in that users can be granted the privilege to

modify or replace the support routines so that their environments can be

tailored to their needs. However, we need not be concerned about

malicious users since as already explained, they cannot affect the

supervisor of any user; they can only degrade their own environment.

Now that the model and the protection mechanism have been chosen,

it is time to consider how the finalized design solves the original

problems stated in chapters one and two. Recall that the major goal was

to trap errors as soon as they occurred so that the process would not be

destroyed and so that debugging could immediately take place.

With the proposed design, any attempt to wildy store data on the

support routines themselves or in their environmental components, would

cause the hardware to "trap" the offending instruction, preventing it

from continuing. An error condition would then be signalled (see

chapter six for more information on signalling), notifying the user that

the error had occured. The exact instruction and location causing the

problem could be determined and subsequently fixed either by patching

and continuing, or rewriting and recompiling the program.

-36-

Although It may not always be possible to continue, at least the

process as a whole would be saved. Saving the process allows the user

to continue working on the development of the program and prevents any

damage to databases that might have occured if the error was not caught.

The ideal solution would work just as well but would extend the

protection to each and every program. However, as stated earlier, the

support routines change infrequently and could therefore be checked to

insure that they operate properly together. Thus, the only protection

needed, at a gross level, is for the support routines, allowing the

robust environment for program development to be realized.

-37-

Chapter Four

A Closer Look at the Support Routines

This chapter presents more detail on identifying and protecting

support routines. It describes two methods of protection: One for

procedures that have no static storage, and another for the more complex

functions of the user environment with static storage.

4.1 Two Cases of Support Routines

Some of the low level support routines on a system require no

static storage, linkage, or databases for their operation. Simple

mathematical algorithms are examples of such routines, where, for

instance, only processor registers are used. The only protection

necessary for these type of routines is for the code itself. Systems

that feature direct sharing usually provide low level support routines

in a shared area that is not writeable by any process. This obviously

prevents one user from interfering with another. This same protection

also prevents users from writing over the code and harming themselves.

Therefore, rings are not needed for these routines; but on systems where

every user gets a personal, writeable copy of the routines, rings can be

used.

-39-

The more complex and interesting protection is for those routines

with static storage (either internal static, linkage, or external data

bases). (8) In these cases, those static elements must be placed in a

lower ring for protection. In order for the routines to access the

areas and function properly, they too must be in the same ring as the

static areas (or lower but would have no additional advantage from being

there) . Code in the lower ring does not prevent the sharing of that

code between users, since the code is (or can be) pure; The impure

sections (linkage and internal static) are allocated per process,

however.

4.2 Guidelines for Support Routine Coding

Dependencies among routines must be established to insure that no

procedure in the lower ring depends on (uses) a procedure in the higher

ring for its correct operation. If this occurs, then the module in the

higher ring must also be brought into the lower ring.

Once a module is brought into the lower ring, suitable entry points

are made into gates, allowing the outer ring programs to call the inner

ring procedures only at the specified entry points. Internal interfaces

are thus protected.

(8) If allocate/free areas are used some static storage is required to
remember the location of the allocated block. Otherwise, if the blocks
are used only during the execution of the procedure and then discarded,
it is essentially being treated as automatic storage.

-40-

Parameters that are passed on user calls to gates are validated by

the ring mechanism to insure that access to the parameters is allowed in

the calling ring. This prevents the calling ring from specifying areas

that are inaccessible in the outer ring, but accessible in the inner

ring. Without such checks, the outer ring could declare that an area

used for static storage in the inner ring was the area for an output

argument, thus causing the inner ring to destroy itself. This problem

is exactly the same as that faced by a user/supervisor interface

[Schroeder and Saltzer 72] except that here the protection is mainly for

self protection and debuggability, not system integrity.

Modularity of the procedures [Parnas 72a, Liskov 72] is necessary

to help in identifying and separating the user domain into functions so

that appropriate ones may be protected. Modules that interact strictly

by standard parameter passing via calls to procedure entrypoints are

likely to be the best candidates for separation and protection.

However, modules that interact via a shared database pose a problem.

Although parameters are usually passed internally as a shared database,

there are specific rules for dealing with those parameters. Module

specifications can specify the range of, and the legal manipulations to

be performed on the parameters. However, there are no specification

techniques yet devised to specify a limited set of operations when

dealing with shared databases directly. Thus, the boundaries of modules

that share a database are not well defined and the dependency between

modules is hard to establish. [Janson 76] discusses this in some detail

and has termed modules that share a database as weakly modular.

-41-

The way that weak modularity prevents protection of a module is

straightforward. If one module is placed in an inner ring, it still

depends on the shared area to operate correctly. The shared area must

remain in the outer ring so that the other module can manipulate it.

But if the area is in the outer ring, any program there can write on it

and therefore affect the correct operation of the inner ring module.

Support routines that can be protected are therefore limited to

those that do not interact in ways other than through the standard

call/return mechanism. A poorly designed system (i.e. one in which

shared databases are the usual means of communicating parameters) can

thus limit the number of modules protected. Interestingly enough, the

goals of "clean modular programming" exactly identify those modules that

can be protected. Functional abstractions and data hiding both provide

for the type of modules that are acceptable [Parnas 72a, Liskov 72].

4.3 Examples

This section presents examples of support routines that may be in

the supervisor but could be moved to the user environment. Although the

routines could be in the supervisor, they are not there due to a desire

for a well designed, certifiable system. Examples chosen are event

management, timer managenment, Input Output management, and namespace

management. This section also describes how rings can be used for the

direct protection of linkage.

-42-

In this section, it must be rembered that should one of the support

routines fail, the process would no longer be able to continue program

development and debugging. The reason why keeping the current process

is considered is due to both the time and expense that went into

creating the process, which may contain a considerable amount of

volatile state information useful for continued work. Therefore

throwing away the "broken" process and acquiring a new, Rood one is less

desirable than continuing with the old process. The failure modes

considered in this section are those due to "wild" storage of data in

sensitive databases needed for continued execution of the process.

Interprocess communication can be accomplished by direct writing

into shared memory. However, to avoid busy waiting (9) processes can go

to sleep or "blocked" and wait to be "awakened" by another process.

Only the minimal amount of software necessary for the actual process

blocking and awakening need be in the supervisor. Multiplexing the

blocking for various events can be handled by the user.

In use, a process goes blocked and is resumed when any event is

sent to it. The user block routine then requests from the supervisor a

list of all the event messages that were sent. If the one that the

process was waiting for is in the set, the user block routine returns to

the waiting program. Otherwise, the received messages must be saved for

future reference, and the process goes blocked again.

(9) Looping while waiting for an event to occur,

-43-

The integrity of the area containing the list of events known by

the process and those messages that have arrived but not yet processed

is vital to the normal execution of the process. Thus this area and its

manager are ideal candidates for protection.

Another multiplexed mechanism can be real and virtual timers.

Suppose that the supervisor provides for only two timers per process,

one for absolute time and the other for elapsed virtual (chargeable) cpu

time. These timers can then be multiplexed in the user domain thus

reducing supervisor complexity. One way of accomplishing this

multiplexing is to maintain a list of timers in use, sorted by "alarm"

time, with the time closest to the present in the actual timer supported

by the system. When that timer goes off, or when a closer time to the

present is added to the list, the real timer will be set to the real

closest time to the present. This list of timers for the timer manager

is considered another important, but fragile, support facility of the

user environment.

If the hardware of a system is correctly designed, and users do not

share I/O devices, only a minimal mechanism need be in the supervisor to

support user requested input and output. Users can be allowed to write

a channel program to control "their" devices and no others. The

supervisor need only start the channel for the appropriate device and

possibly assign storage for the duration of the operation. (10) Only a

(10) Multics allows users to request that the supervisor not page out a
page of memory for a short duration so I/O to fixed addresses can be
accomplished.

-44-

simple interface to the supervisor is needed to identify a set of I/O

instructions for a particular channel to execute. Device control

modules should be in the user environment along with all device access

programs. Higher level database access programs and code reflecting a

device independent environment should also reside in the user domain.

Of course I recommend that all these functions reside in the protected

portion of the user domain.

Multiplexed devices can be harder to handle. If two users are

allowed to share portions of a single device (e.g. sections of a single

disk pack), it would be impossible to keep this code in the user domain.

By definition it must reside in the supervisor since it deals with

resource sharing and multiplexing among independent users. However, in

the case of one controller with multiple devices (drives), correct

design of the controller can allow it to be shared by many users. All

that is required is to prevent an I/O channel program from switching

devices during its execution. Then only allow the supervisor, at the

time the channel program is started, to specify the device on the

controller. This approach has in fact been used by Honeywell on their

single controller, multiple drive tape units for Multics [Greenberg 76].

Short reference names are local user defined names that can be

associated with long global names to simplify talking about an object.

Once the relationship between a reference name and global name is made,

only the short name need be used. As an example, a reference name might

be "square root" for a procedure that computes square roots, while the

-45-

global name might indicate the location of that procedure within a

naming hierarchy such as:

"ROOT>system library>math routines>9quare root". (11)

Typically a linker, or binder, associates the reference name as

used in programs (e.g. x = square_root (y)) with a particular module in

the system. As Bratt [Bratt 75] explains in his thesis, the reference

name facility need not be in the supervisor. Bratt describes how that

facility can be removed from the supervisor and be placed in the user

domain. However, this facility is greatly depended on by all programs

in the user domain. If the reference name manager should fail,

inter-program linkage would fail and no new programs could be found or

executed. Thus it is imperative that this facility be protected from

damage by user programs. Placing the reference name manager in the

protected environment is essential to the goal of providing an

"unbreakable" user environment.

All the above modules contain significant state information in

static storage. Therefore, it would be desirable to place those

programs in the protected environment so their important state

information is protected.

Finally, consider dynamic linking. Janson [Janson 74] explains in

detail how dynamic linking can be removed from the supervisor of an

operating system. However, here too, the eventual placement of the

(11) A>B indicates B is in directory A. ROOT is the root directory of
the naming heirarchy.

-46-

linker module is in the user domain. The set of search rules, guiding

the linker to find a specific copy of a named procedure, constitutes a

static database used by the linker. To protect the search rules, and

thus the linking mechanism, the linker should be placed in the protected

environment.

Another part of the linking mechanism that Janson termed

environment initialization is also important to protect. In Janson's

design, a procedure locates its static storage and linkage section when

it is entered. The first time that the procedure attempts to do this

will trigger a mechanism which will allocate and initialize these

sections. This allocation and initialization processes can be

protected.

The tables that procedures use to find their linkage and internal

static sections, the Linkage Offset Table and Internal Static Offset

Table (LOT and ISOT), can also be protected. The LOT and ISOT only have

to be read by procedures; it is an error if a user program writes in

them. Similarly, linkage sections are only read by programs. Thus the

LOT, ISOT and linkage sections can, and should be protected from errors

caused by user programs. To do this requires placing not only the

environment initializor in the protected environment, but the linker as

well, since the linker modifies linkage sections. This approach

realizes at least part of the original goal of protecting the components

of the user environment.

-4 7-

Chapter Five

Command and Control Routines

A human user of a system is aware of other environments besides the

execution environment. Any program that accepts input from the user's

console interprets what the user types in a different way; hence the

appearance of different environments. This chapter examines those

environments that are used to control a process. This research has

identified two environments used for this purpose, which have slightly

different properties. These environments are embedded in the code that

was classified as command and control programs in an earlier section.

These two environments and their properties are discussed below.

5.1 Structure of Environments

The relationship between the user at a terminal, the program

execution environment and the command and control environments is shown

in figure 5.1 below. Between the terminal and the program execution

environment flows user program input and program output. Between the

terminal and the command and control environment flows program loading,

stop, and start requests, as well as messages from the command and

control environment (e.g. "program not found"). Finally, between the

program execution environment and the command and control environment

flows a program generated command stream and control messages such as

-49-

start, stop, and load a particular program. All these streams will be

discussed in more detail in later sections.

Control Imk)

"Start,Stop Orloal"

f" I £ure 51 Conr\mdr\<i £w* Control Strocture.

Consider the components of figure 5.1. The program execution

environment has already been discussed in previous chapters and the

reader is probably familiar with some terminal on a timesharing system;

thus, an examination of the command and control environment is needed to

complete the picture. Although these environments are shown merged into

one in the figure, they have different properties in reality. An

attempt will be made to describe these differences, but as you will see,

it is hard to separate them entirely. They will then be considered

merged for the rest of the thesis.

-50-

5.1.1 Command Environment

The command environment is seen as the program that the user is in

communication with immediately after being given a process. In

particular, the command environment responds to user requests that

describe what programs to run for the user. After the specified

programs have completed, the user is again in communication with the

command environment. Typical requests to the command environment are

"run the editor" or "compile my program" in whatever syntax is

understood by the command environment.

The types of messages that are sent between the command environment

and the rest of the user domain are basically "load this program and

transfer to it" in response to a user command, and in the other

direction "execute this command line as though the user typed it" for

programs which generate command lines. These messages are shown in the

figure below as user requests and program requests, respectively.

User requests are generally familiar to all computer users. It may

be some form of job control language ("// exec pgm=basic") or one word

command lines on a timesharing system ("basic"). The use or need of

program requests might be doubtful though. However, use of this feature

could be made, for example, for the implementation of a command file

facility (more will be said about this in a later section) . This

-51-

facility allows users to create a file containing a sequence of commands

to be executed, and invoiced by running the command file program

specifying that file as it's input. The command file program then

simply calls the command and control environment with each command line

in sequence. The command lines are passed to the command environment

via the program request stream.

Another use for this stream is to allow programs to pass a

"canned", or user supplied command line to the command environment under

special circumstances. This feature might be employed in a procedure

that could accept a generic command string and append or substitute

generated information into the string. Then the command processor would

be called with each such generated command string thus relieving the

user from having to type the same command over many times. An example

of such a procedure would be one that simply generates a list of new or

modified information files; invoking this command would generate a list

of modified or new file names. If the user wanted each one of the new

or modified files to be printed, he/she could supply the generic command

string "print %" to the list_new_files command, which would then

generate the commands "print new_file_a", "print help_file_3",

(etc.). The "%" in the generic command string would be replaced by

actual file names in each generated command. Then the command processor

would be called with each of the formatted command lines. (12)

(12) This is just an example and not a proposal,

-52-

5.1.2 Control Environment

Whereas the command environment quietly waits for requested

programs to complete, the control environment is always awake and

listening to the user (at least conceptually). The exact mechanism that

is used is not important here; what is important is that at any time the

user can say "hey you (computer or process), stop and talk to me !". In

this way, the user can stop an infinite loop in a program and not waste

time and/or resources waiting for a failing program to complete. Along

with the power to say "stop", the user would also like to say "OK, go

ahead", or "forget that".

Functionally, the user generates a signal causing the process to

enter the control environment. (13) Users then have a choice of

debugging and continuing, or forgetting the computation. They may also

run any other program first, before returning to the stopped program.

In this way, a calculator program can be used to check intermediate

results. Similarly, an inter-user message facility can be used to ask

the author of a program "hey, what's wrong ?", get a response, then

continue the interrupted program. This general program calling can be

implemented by allowing the control environment to call the command

(13) On Multics, users generate this signal by using the "break" or
"attention" key on their terminals. On TENEX, control-C generally does
the same thing.

-53-

environment to process all but control environment requests. However,

control environment requests might actually be parsed by the command

environment and invoke control environment functions. (14) This

apparent double dependency can be resolved by joining the two

environments, thus providing a single command environment to the user

which is simpler in structure and more easily understood.

In summary, the major difference between the control and command

environments is that the control environment is asynchronous with the

rest of the user process flow, and responds to simple, base level

requests, with possible extensions to include full command processing.

For the rest of this thesis, the two environments are considered merged

into one.

5.2 Processing Commands

This section examines the details of how a command may be

processed. There are, of course, numerous ways to accomplish the type

of processing described in this section (see [Broughton] for example),

but the ones chosen are useful for explaining some protection problems

that will be described later in this chapter. The processing described

covers a large variety of known systems.

(14) This is done on Multics where the command environment processes all
requests, some of which invoke control environment modules.

-54-

In an overall view, the command environment performs four

operations in response to a user request to execute a module. First it

parses the command line and performs possible substitutions, parameter

evaluations, and conditional evaluations. It then searches for the

identified (possibly ambiguously named) module using a set of search

rules. The module is then brought into the address space of the user.

Finally, the module is transferred to and it begins executing.

Note that none of these functions require that the command

environment be part of the supervisor; no special privileges are needed

to perform all of the functions stated. Even so, some systems [TENEX,

CTSS] have the command environment as part of the supervisor. Placing

the command environment in the supervisor suffers from the problems

discussed in chapter three. If the reasons for having the command

environment protected is solely for the benefit of the users (i.e. they

cannot destroy the command environment), then the discussion on

protection, later on in this chapter, should help in choosing a new

approach to solving that problem.

The functions of the command environment are now examined in

detail. The tranlating and parameter evaluation mechanisms are examined

first because they are particularly important in this work. A modular

design of command processing is described. The modules are classified

into two categories: 1) those that look, at every command line, and 2)

those that are optional and look at command lines only when asked. This

classification will be referred to later on in this chapter when the

protection of the command and control environment is discussed.

-55-

5.2.1 Text Substitution

Translation, or substitution of text, can be a complicated task if

it is not restricted. What is meant here is simply the substitution of

one string of characters for another in the command line. A frequently

used form of this type of processing is for abbreviations. For example,

a user types "fortlm" and gets "fortran -list -map" which might execute

the Fortran compiler and provide a listing and statement map. This type

of processing can be neatly packaged in a "front-end filter" preceding

the actual command processor as shown in figure 5.2 below.

This approach is useful because the abbreviation processor can be coded

in a separate module (allowing easier debugging) and inserted only if

desired. This module is considered a member of the "always used"

category since, once it is selected and inserted in the command

processing path, it examines every command line to determine if

substitutions are necessary.

5.2.2 Parameter Evaluation

A second aspect of command processing that is considered here deals

with how commands can be affected or controlled by the user's total

environment. With this flexibility users can control the execution of a

command based on the date, a list of files in a catalogue or directory,

-56-

l Vvyt

C«oxvNma)r>c

\

^'l©^^'^'^

or on the name of the person who sent them the last message (for

example). Use of these controls easily allows printing of only new

messages (those that have been created today), compilation of all

FORTRAN programs in a certain directory, or replying to the last person

who sent you an interactive message, without ever having to specify the

date, list of files, or the name of the last message sender.

Such features can be implemented as a special cases in the command

processor and use special keywords. However, the most general approach

is simply to call procedures which implement each function and return a

string to the command processor as a result. Such an approach is used

-57-

on Multics; these special functions nrc referred to as "active

functions" [MPM]. The active functLon processor evaluates all active

functions in a command line and then calls the command processor with

the resulting string. Figure 5.3 shows how the example stated earlier

works in combination with the abbreviation processor.

directory

hhft £*** «•*•'*!

Tof*yaf» vf*«P>«.*H #$o«*WnJ

a P\l
b-Wt^»>
C Uxt
d- bcpl
e $<H\i»*\

t . \l<jp

1

WWa* V>SO<VO»N t^oAnvs"

b<Wt*»t\ t .^o/tovV'

\,Orr\fr\zY\<k

^f\\J>V~or»WV«vSt

M^ore. S-3> \otaL CowNYvsir.^ Process M X
-58-

The program invocation mechanism of the active function processor

and command processor are very similar since both call procedures.

Therefore it is possible to merge these two functions into one. (15)

However, the modules will be considered independent to facilitate the

protection discussion later in this chapter. The active function

processor also looks at every command line to see if active functions

must be invoked. Thus, it too belongs to the "always used" category of

command processing functions. Notice that the active functions

themselves are not always used and thus the collection of active

functions are members of the "optional" category.

5.2.3 Command Files

On many systems long sequences of commands may be stored in a file

and executed by only typing a single command line. This type of

processing is useful for reducing typing time and eliminating errors,

for providing complex "abbreviations", and for providing a simpler

interface to a complex system (e.g. catalogued procedures). Most such

implementations allow parameter substitutions and offer a language to

control execution and flow within the command file (e.g. "if ..." and

"go to ..."), including error handling (e.g. "on error go to ..").

(15) This is done on Multics.

-59-

Such processing can be merged into the command processor, but for

the sake of modularity and clean design it should be a separate module

which reads the command file and calls the command processor with each

command line. This type of processing also need not be protected in any

way (at least for system security reasons) and therefore can execute in

the user domain making use of the "program request" stream described

earlier. If implemented as a separate program, the command file

interpreter does not look at every command line; it is only invoked

when the user specifies that it should be. Thus, the command file

interpreter is considered a member of the "optional" command processing

functions.

5.2.4 The Command Processor

After all the command line processing is complete, the command

processor is called to invoke the specified program. The program name

in the command line is used to find the actual procedure within the

naming heirarchy. The linker search mechanism may be used for this

purpose which, if used, would provide a single search strategy in the

user domain for both dynamic linking and command program locating; one

search strategy is obviously more easily remembered than two.

The parameters supplied on the command line are formatted

appropriately for passage to the specified procedure. The "load

program" signal is sent to the program execution environment, which may

-60-

cause, the program module to be read into main memory, or merely assign

the module a virtual address (making it "known"; see [Bratt 75] for

details) . Finally, the "go" signal (which may simply be a transfer

instruction), starts the loaded procedure.

Obviously, the command processor is the key module in the command

environment and thus is a necessary and always used function.

5.3 Getting to the Control Environment

The simplistic approach to entering the control environment is

merely to transfer control from the executing program directly to the

control environment procedures, much like an interrupt sequence.

However, there are times when users wish to program their subsystems

with internal "attention" procedures which get invoked at the time a

stop request is issued from the control environment. These procedures

can be used to cancel the effects of a request that is currently being

worked on, or to make a database consistent (e.g. unlock it). For

example, when LISP on Multics [Reed 76a] recognizes that the user wishes

to stop the computation, it first updates all bindings in memory from

the working registers so that the most recent effects will be seen by

the user without explicit knowledge of register optimization built into

the LISP subsystem. Only then does LISP allow the "stop" to take

effect.

-61-

However, if the subsystem is malfunctioning, it would be impossible

for a user to abort it and return to the command environment.

Therefore, there is a need for at least two kinds of stop signals; one

which allows attention procedures to be invoked, and a second which goes

directly to the control environment. Then users can first attempt the

more elegant stop, allowing the procedure to recover, but if that fails,

they can use the "panic stop".

To implement this type of feature there must be a way of specifying

the type of stop desired. The "break" or "attention" key found on most

terminals is usually used as the "stop button" but there is only one of

them. This can be multiplexed by having users type a single character

after the break key denoting what type of stop is desired, or by some

coding in the number of breaks sent. The latter approach is prone to

misuse however, because impatient users would wonder whether a single

break got through if no result of that fact is quickly demonstrated and

then would send a second break which would get them into the wrong

environment. The TENEX system [TENEX] has the useful feature of

allowing all control characters (16) to generate a variety of process

interrupts. In this way no multiplexing of the break key need be done,

and simple one character strokes can effect desired responses. Each

control character can then invoke a special independent function.

TENEX, for example, responds to control T by first beeping (indicating

that the system is still there), and then giving a system load estimate

and resources used since the last request.

(16) A keyboard character sent with the control (CTRL) key pressed
simultaneously.

-62-

5.4 Implementation of Command and Control Environments

How the command and control environments are implemented is of

concern because they may be implemented as user programs running

unprotected in the user execution environment, as on Multics. If this

is the case, then these programs are also subject to interference from

other user programs as discussed earlier. Control of a process is an

essential feature; therefore in providing a robust environment it is

necessary to protect the command and control environment. How these

programs can be protected is now considered.

5.5 Protecting the Command and Control Environments

Protecting the command and control environment means that the

procedural packages implementing that environment must be protected.

The choices for doing this basically fall into two categories. The

programs can exist in independent processes with separate address

spaces, or they can share an address space and memory with the user

programs, as the support routines were allowed to do. The types of

interactions between these programs and the others of the user domain

can help in deciding which one to choose.

-63-

The messages to the command environment are simple character

strings. For the control environment, messages are, more or less,

"stop" and "go". Because of the nature of these messages, they are sent

infrequently (usually once per user request). For this reason tight

coupling, by memory sharing, between the two environments is not

necessary, and efficiency of communication is not that important. Thus,

virtual processors, or physical separation might prove to be feasible,

particularly in light of the current trend towards "distributed

computing".

The National Software Works project [NSW] uses the approach of a

"front end" computer as a user to computer network interface. The front

end has some memory and a moderate amount of processing power. It can

parse user requests and format them into a more rigid syntax easily

processed on a variety of host computers. Thus, front end processing

can alleviate some load on the host. The front end can also provide a

more reliable computing utility by having low level software choose

different computers to perform actual requests, in the event of failure.

The Distributed Computing System [DCS] has this goal in mind.

A front end processor can also support local editing, allowing a

user to compose and edit text without making use of the host computer,

thus further reducing the load on the host. Character at a time echoing

can be supported by the front end with special "action" keys forcing the

transmission of words or lines to the host. This approach alleviates

the need for the host computer to respond to each character typed by

-64-

each user and thus also helps in reducing system load. This last

facility is in fact currently being implemented on the ARPANET [ARPANET,

RCTE].

There are, however, problems with this approach, one of which has

to do with the program "loading" feature of the command environment.

The other problem is that some form of communication is needed between

the control, command and user environments. The loading function and

communication mechanism can, of course, be in the supervisor, but

arguments have already been presented for not placing similar basic

functions not relating to system security there. The best place for

these features is in the user environment, but as mentioned many times,

programs are subject to failure there. To prevent this, the

communication mechanism at the user environment end, and the program

loading function, can be placed in the protected support routine

environment described earlier.

Another reason for not using multiple processes is that the "stop

and go" features of the control environment can very simply be

implemented if there is only one execution point in the user's

computation. It is obvious that if some signal from the user causes

immediate transfer to the control environment, the user program will

automatically be stopped (much like an interrupt). Similarly, when the

control environment transfers back to the user program (much like a

return from interrupt sequence), the "go" function is obtained.

-65-

There are arguments for not having interrupts, however, mainly

based on complexity and design of programs that service them. The

environment that the interrupt handlers run in is generally fragile and

not completely specified due to possible functions affecting it that

were in progress at the time of the interruption. The preferred option

is to use processes where appropriate. These processes simply wait for

the desired signal, then act accordingly in a synchronous manner. When

the job is done, the process then goes "blocked" waiting for the signal

to occur again. In this way, the environment that the interrupt

handlers run in is well defined.

This scheme does not eliminate the need for interrupts, however,

but limits the code that must be run during the actual interrupt

processing to that which performs scheduling functions. By nature,

these scheduling functions are designed to execute in a manner that does

not require full system capabilties. For the actual stopping of the

user execution environment, real interrupts must also be used so that

control can be torn away from the executing code.

I have no argument against the use of processes for such functions

except that on a large system, like Multics, where processes are very

powerful processing agents, the expense is simply too great. It would

be advantageous to provide cheap, weaker processes to perform these

functions for simplicity of coding and understandibility. How processes

can be implemented cheaply is discussed by Reed in his thesis

[Reed 76b]. Such processes were used by a memory management design with

-66-

much success [Huber]. Lacking these cheap processes, it was decided to

place these functions in the environment already set up for the support

routines. This gives us the simple control over the process discussed

above (because of the single execution point), and requires no

additional tools for multi-process intercommunication to be developed.

5.6 Design Decisions Based on the Protection Scheme

The following sections describe decisions that were made solely

because of the decision to place the command and control environment in

the protected half of the user domain. In using a different approach,

such as multiple processes, it is not immediately clear that the same

decisions would have been made although given some thought, it would

seem that they are not totally unreasonable because of other criteria

such as delay time and load transfer to the front end processor.

5.6.1 Command Processing Revisited

As a result of placing the command and control environment in the

protected half of the user domain, design decisions have to be made

regarding the placement of each of the command environment modules. The

major factor that influenced the decisions discussed below was the

desire to provide a path to the command processor that was unaffected

by failures in the unprotected half of the user domain so that control

-67-

over the process could be maintained. Thus the "always used" modules,

categorized earlier, are precisely the ones that must be in the

protected environment. The "optional" ones need not be, however.

Unlike the decisions made in the certification work discussed in

appendix A, there is no exact minimal set of programs that have to be

protected. The choice can therefore be based on considerations other

than security. One rule that can be used is "if it can be protected it

should be", but this might lead to protecting the entire collection of

programs in the user domain. While this is not a real problem, it

clutters up the protected environment with many simple programs that are

not essential support modules. Although it would be desirable to

protect all programs, as in the ideal solution presented in chapter two,

we must remember that the preservation of the process and control over

it is of paramount importance and the loss of a simple function could be

remedied dynamically when it is discovered. Keeping the protected

environment simple also helps in understanding and maintaining it

leading to a more robust environment.

Obviously the command processor itself must be placed in the

protected environment, as it is the essential component of the command

environment. The active function processor must also exist in the

protected environment because if it fails, no command line will get

through to the command processor. However, the active functions

themselves should not execute within the protected environment for three

reasons. First of all, they may be user supplied and might be in the

process of being debugged. Secondly, the protected environment is

-68-

different from the one the user "sees". The working environment is

supposed to be the one that controls the execution of the command. But

by executing in the protected environment, active functions refer to the

wrong working environment. Within the protected environment the active

functions have access to more areas than the normal user programs, and

know about more files or information than the user intended.

Consequently, they might specify operations that should not or cannot be

done (e.g. compile the command processor because its name matched "all

PL/I programs"). There can also be naming conflicts between the

protected environment and the normal execution environment. The user

may request the compilation of a new version of a program but get the

old one because it is found in the protected environment. Finally,

active functions are not required in order to pass a simple command line

to the command processor, which is all that is desired for process

control.

The abbreviation processor must exist in the protected environment

because it looks at every command line and could prevent any commands

from getting through to the command processor if it fails.

Finally, the command file processor need not be in the protected

environment since it is not used for simple command lines and can

therefore execute in the unprotected part of the user domain without

fear of loss of control over the process. The choice of placement of

this module was just a matter of taste and could have, just as easily,

been placed in the protected environment. However, the decision for its

-69-

placement was also due to a desire to not clutter up the protected

environment with non-essential support modules.

5.6.2 Command Processor Escape Mechanism

Since the placement of the command and control environment programs

are in the protected environment, some user commands have to be executed

in the protected environment. In particular, all control environment

commands such as "start", to continue a stopped computation, and

"release", to abandon a computation, have to be executed within the

control environment. Since only one command interpreter exists, it has

to know that it should treat these commands differently. Thus, a table

of commands to execute in the protected environment can be used which is

looked at by the command interpreter.

It is also useful to provide an additional mechanism for users to

specify execution of a command in the protected environment for just

that one instance. An example of such a program might be the access

control setting program. Executing in the user program environment, the

access control program could not affect programs in the protected

environment; this could only be done from within the protected

environment (this is exactly what is wanted, normally). However, a user

might want to invoke the access control program once for specifically

setting the access control list on a protected program, possibly for

installing a new version of the command processor, and at another time

-70-

to merely add someone's identifier to a user program's access control

list. The access control program should not always execute in the

protected environment or it will have more access than it needs most of

the time. This extra "freedom" allows mistakes to have more serious

effects than they would have had otherwise. (17) Thus, the escape

mechanism allows users to explicitly specify the times when commands

should execute with increased privilege. All other times, commands

execute in the less privileged user execution environment (except for

those listed in the "special" list). Letting a program execute with

only enough access and privilege to do its job has been a design goal

known for many years and is discussed in [Saltzer and Schroeder 75] .

The command processor escape mechanism coupled with the feature of

allowing user programs to call the command processor seems to point out

a gaping hole in the protection of the support routines and the command

and control environment programs. Apparently, any user program could

call the command processor with the escape mechanism and cause a failing

user program to execute in the protected environment and destroy it.

One simple and obvious solution to this problem is to have the

command processor recognize from which environment it is being invoked

and ignore the escape mechanism in calls from user programs. However,

this presents a different user interface and might possibly confuse

users who wish to make use of the escape mechanism from within another

program, such as the editor. For this reason, I feel that allowing the

(17) This is similar to the major problem reported in this thesis.

-71-

escape mechanism is necessary. Justification for allowing this and

still claiming to offer some protection for the support routines Is

found in the belief that the type of error described is a rare one and

not expected to occur. After all, it is assumed that the user programs

are not malicious in nature. Thus maintaining this feature provides a

single user interface to the command processor.

An important question that might be puzzling the reader at this

point is "why should anyone trust user programs to behave respectably

?". This question deserves a good answer and is an important part of

the overall design. Recall that all system security related programs

exist in the supervisor and are protected from all users; once beyond

the supervisor boundary, one user cannot affect another. Partitioning

the user domain only helped the user from self harm; no additional side

effects could occur. Thus, a truly malicious user, using the proposed

system, could only affect the user portion of the process. No other

user process, nor system program could be damaged. The proposed design

is merely an optional aid to a willing user and not a must.

-72-

Chapter Six

Signalling

Signalling is discussed in this separate chapter mainly because it

is a subject that can be factored out for simplicity. The reason for

discussing signalling at all is due to the problems that appear when two

domains interact so that signals can pass between them. This structure

is relevant because of the method chosen to protect support routines of

the execution environment.

To treat this subject properly a model of signalling is described.

Extensions to this basic model are then introduced so that it is useable

in real world situations. Problems with signalling are then discussed

to point out basic pitfalls in the original model of signalling. A

solution to those problems is suggested that is based on a newly

designed language (CLU). Finally, problems explicitly related to

signalling in multiple rings are presented and discussed in the context

of the model, its problems, and the solution presented.

-73-

6.1 Purpose of Signalling

Signalling allows the establishment of a procedure that knows how

to deal with a particular situation, usually an error condition, and

invokes that procedure at the time the condition is detected. Return

codes (an output parameter whose value indicates success or failure of

an operation) are often used to denote error situations. Signalling

differs from simple return codes because the procedure to handle the

error is called at the time the error is detected and may allow the

computation to proceed instead of simply undoing the computation and

returning.

6.2 A Model for Signalling

The PL/I language has a facility, described in the next paragraph,

for dynamically setting up, calling, and removing condition handlers

[Noble 69]. The method used for choosing which condition handler to

invoke is straightforward and generally familiar and thus will be used

as the basic model for signalling. The signalling mechanism used on

Multics is based on this structure. I believe that Multics is the only

system on which the entire collection of software operates under a

common signalling framework. Thus it seems reasonable to use PL/I as a

model.

-74-

In PL/I, handlers for various conditions are established by the

execution of the "ON" statement. Multiple handlers may be set up for

any condition in different procedures. The most recently established

handler will be the one that is invoked upon detection of the condition.

Handlers are automatically reverted when the establishing procedure

returns.

This mechanism allows any procedure to handle an error locally or

pass handling on to a system default handler or handler supplied by the

calling procedure. Local handling is considered more appropriate by

some since the local procedure is more aware of the actual situation at

hand at the time of the error. Parnas [Parnas 72b] however, describes

how a high level routine may, in fact, be better equipped to handle an

error than a low level procedure simply because it understands the more

global context and significance of the error. More will be said about

this later.

-75-

6.3 Extensions to Signalling

It has been found that being able to note the occurrence of an

error but not handle it explicitly is useful. Similarly, taking only

partial action towards fixing the problem might be desired. Using

Parnas' example, an I/O routine may discover a read error but does not

explicitly handle the error since it is not aware of the use or need of

the record. It may however desire to maintain local error statistics

and then ask its caller whether it should retry or ignore the operation.

In these types of cases Goodenough's [Goodenough 75] PASS operation

might prove useful. PASS allows a handler to "...explicitly disclaim

interest in (further) processing of an exception, directing that the

exception be passed on to some higher handler".

Working in harmony with PASS is the useful extension of having a

handler for any condition that is not explicitly named in a procedure.

The condition name "any_other" [MPM] is used on Multics for this

purpose. This extension is useful in light of the previous example

where the tape I/O routine wanted to detect all errors and just make a

note of them, then pass them on. It would be extremely awkward to list

all possible conditions that could arise at any point and have the same

processing for each. Furthermore, since error conditions can be user

defined, it may not even be possible to identify all the errors that

could arise. The any_other handler solves these problems.

-76-

A third extension to the signalling mechanism is the "cleanup"

condition [MPM, Goodenough 75]. This condition is signalled in every

block that is abnormally terminated (i.e. does not execute a "return"

sequence). A handler that specifies the termination of a procedure

because of an error automatically triggers this mechanism in the

procedure(s) implementing that operation. This allows the procedure(s)

to restore the original state of and/or eliminate "impossible states"

[Parnas 72b] in its operation.

6.4 Signalling Problems

With the basics explained, it is now possible to discuss the

problems associated with a PL/I-like signalling mechanism. The problems

all arise from the ability for a handler to be set up in one procedure

that can handle conditions arising in another procedure. This "feature"

was introduced to overcome the "inconvenience" of specifying a single

handler in separately compiled external procedures (multiple times).

This "dynamic descendence" rule [Noble 69] of PL/I violates modularity

and thus understandability of programs in two ways.

First a low level procedure must know how its callers will react to

errors arising in the procedure so that it will know what to expect from

incomplete operations within itself (e.g. overflow). Thus, it cannot be

programmed without knowledge of "layers" that use it and so it is not

modular. A procedure may not be expecting any particular action from

-77-

its callers; it could depend on the system default handlers. However,

any procedure may handle its own errors and unintentionally also handle

errors of programs that it calls simply because it has a handler for

itself.

Secondly, a high level procedure that handles errors of low level

procedures must know the way in which the error was caused in the low

level so that it can handle it properly (e.g. overflow results in

highest positive or negative value).

A final problem arises when error handlers themselves generate

errors. In this situation the wrong handler may be chosen to handle the

error. Consider two procedures <A> and both having condition

handlers for various conditions. <A> calls resulting in an error in

. does not have a handler for that error, expecting that the

system default error handler will suffice, or that its caller will know

what to do. Assuming <A> does have a handler for that error (call the

handler <A'>), the call stack will look like the figure 6.1 below. Now

if <A'> should take an error like overflow, 's handler could get

invoked even though the module <A> was prepared for handling <A'>'s

errors! 's handler could obviously choose a completely different

method than <A> for handling the error and thus <A'> will not function

properly.

These problems all arise from the incomplete specification of error

handling within each module. I am not arguing for not allowing higher

level handlers to "handle" errors of low level procedures; I agree with

-78-

Stuck

o r

Parnas that this is reasonable, subject to certain restrictions. I

contend (like Parnas) that these mechanisms should be explicitly coded

into the procedures. The "inconvenience" of doing this would be more

than paid off in terms of understandability and ease of debugging of

such software.

Thus, every module would explicitly detail its error handling

intentions with possible options like "ON ANY_OTHER CALL

SYSTEM_DEFAULT_HANDLER" or "ON ANY_OTHER ABORT" for the conditions not

explicitly handled in the procedure itself. For passing of conditions

upward the "pass" mechanism may be employed but I think that passing on

the same condition that arose in the low level procedure is a violation

of modularity since the operation of the low level procedure must be

known by the high level procedure in order to effectively deal with the

error. A better approach would be to have the low level call a high

level routine allowing it to return values such as "abort", "continue",

-79-

"retry", or "use this answer" in a more global sense. In this way the

types of responses are known in advance. More will be said on this in

the next section. Either way, the error handling should still be

explicit and have the programmer and program reader aware of what is

going on.

The CLU language [Liskov] provides for just such explicitness in

error handling [CLUnote 43, CLUnote 60]. Any error not handled by a

procedure automatically causes that procedure to be terminated and

results in a "failure_of_mechanism" condition to be signalled to its

caller. Any upward "traps" [Parnas 72b] (higher level handling of low

level errors) must be explicitly coded.

The only problem with CLU has to do with debugging. This aspect is

extremely important since it is a major topic of concern in this thesis.

On Multics there is a default error handler at the "base of the stack"

that performs the "standard fixup" or reports an unhandled error to the

user and enters a new level of command environment for debugging. Since

the default error handler is called, the stack history is preserved and

debugging is possible. Unfortunately, in CLU, an unhandled error

terminates the procedure so no dynamic debugging is possible. CLU

enthusiasts claim that "debugging mode" can be turned on thus preventing

any terminations due to a failure_of_mechanism, but this has two

problems associated with it.

-80-

First, debugging mode must be explicitly enabled; the Multics

default handler is always there. Of course it could always be enabled

but that leads to another problem. This second problem is that a

normal, expected failure_of_mechanism error that can be properly handled

by the calling procedure is also flagged and told to the user. Thus the

computation could not continue without getting annoying messages and

having to type "continue" or something semantically equivalent.

The only solution I have come up with to this problem is that

termination of the procedure should not occur unless the caller is

prepared to handle that condition (failure_of_mechanism) and be willing

to continue gracefully and not abnormally terminate also. If rio

procedure is prepared for this then the default error handler or user

fault notifier should be called and the stack, will still be available

for debugging.

Given that such a mechanism could be put in CLU, it would seem that

the ideal signalling mechanism would be available.

-81-

6.5 Multi-Ring Signalling

Assuming standard PL/I signalling is provided for in a multi-ring

environment, the first problem that arises follows a simple inward call.

If an error occurs in the lower ring and is not handled there

explicitly, PL/I dictates that the signal should propagate to the

caller. However, since the caller is in a higher ring and has less

privileges, chances are that it could not deal with the actual error

since it cannot affect databases in the lower ring. Thus, it seems

useless to allow signals to pass outward. But not allowing signals to

pass outward apparently contradicts what was said earlier regarding high

level handling of errors. Since the higher ring knows more about the

global situation it should have a say in what should occur if an error

is detected. This apparent conflict can be resolved by the proper

coding of the lower ring. The lower ring should not allow the higher

ring to handle internal errors like "OVERFLOW", rather it should just

indicate a logical error in the lower ring. Then the higher ring can

simply indicate that the lower ring should either retry the operation or

abort. It is situations like this that Parnas may have been alluding to

in discussing "upward traps" [Parnas 72b] , but he does not explicitly

say it. Similarly, Goodenough's "PASS" operation seems to pass on the

handling of the original error. This is where I disagree; the fact that

an error occurred should be made known and a higher level should be

-82-

allowed to decided whether to continue or abort, but should not handle

the original error.

It is in situations like this that Multics falls down. On Multics,

if an unhandled error is detected in a lower ring the computation Is

aborted. The outer ring is notified of this fact but cannot ask. for a

retry or continuation from that point. There is currently no general

mechanism for inner ring programs to specify a "checkpoint" and wait for

outer ring intevention to continue. (18) The checkpoint feature allows

some inner ring history to be preserved so that if continuation is

desired, the inner ring need not recompute everything up to the point of

the error; it would merely continue from the checkpoint. The checkpoint

feature, however, should not allow the partial results to be seen by the

outer ring. Any other request given in between the time of the error

and the continuation or abort should function normally and independently

of the partial results held in the inner ring. The checkpoint is merely

a technique to help improve efficiency in cases where the precomputation

involves a sinificant amount of resource usage. However, the checkpoint

feature is not required for the proper operation of the signalling

mechanism.

The second problem in multi-ring signalling has to do with outward

calls. Outward calls is how the command environment that exists in an

inner ring would call a user procedure. If the default error handler

(18) Errors during dynamic linking are an exception to this; they are
handled as a special case and are "restartable".

-83-

should be protected as a common mechanism, signals have to travel from

the outer ring to the inner ring to activate the default error handler.

But there is no way to guarantee that the mechanism used to transmit the

condition from the outer ring to the inner ring is breakproof since it

would involve outer ring mechanisms to operate.

To solve this problem the procedure that does the signalling in the

outer ring can be placed in the inner ring (the protected environment).

It would then be able to signal conditions normally on the outer ring

stack, and then switch over to the inner ring stack if no handler were

found or if there were an error while attempting to signal such as a

misthreaded stack in the outer ring.

A final problem discovered in multi-ring signalling has to do with

an outward call followed by an inward call. In this case there are two

outstanding invocations of the inner ring. Now, if the second

invocation of the inner ring were a subprocedure of the first, the

second invocation might depend on condition handlers in its parent

procedure. However, in the normal PL/I signalling structure first the

outer ring would have a chance of fielding an error in the second

invocation of the inner ring before the expected handlers of the parent

procedure in the inner ring would get control (if ever).

Using a debugger and figure 6.1 as an example, consider <A> to be

the main procedure of the debugger and <A"> to be an internal procedure

called by an activated breakpoint. Let be the program that is being

debugged. Now if <A'> signals a condition, would have a chance to

-84-

field it, not allowing <A>, the main debugger program, to properly

handle it. This example is somewhat contrived and may not seem

realistic enough to the reader. However, programs are written with

internal procedures and the error handling may be expected to work this

way. Because of the lexical proximity of the internal procedures, the

programmer might not consider the problem discussed. Again the solution

is complete specification of error handlers even in subprocedures, and

elimination of the "dynamic descendence" rule.

-85-

Chapter Seven

Implementation, Conclusions, and Future Research

7.1 Implementation

An implementation of some of the ideas in this thesis was

undertaken to show that 1) the user environment can be partitioned in

the manner described, 2) all the interactions between the environments

were identified, and 3) rings are efficient for this separation.

Multics was chosen as the system on which to implement the test

environment because it supports the process model described in chapter

two and suffers from the problems described in chapters one and two.

Furthermore, Multics has rings implemented in hardware which would

undoubtedly help make the implementation efficient. Finally, Multics

was an easily available system to experiment on.

Chapter four discusses guidelines for support routine coding that

facilitate their separation and protection. Those guidelines are

basically modular design providing functional abstractions and data

hiding. Experience with the test implementation reinforces the belief

that protection would be simpler for those routines that followed the

guidelines suggested, and harder for those that did not. In particular,

both the event manager and timer manager (discussed in chapter four)

were designed and coded as functional abstractions. Thus, by merely

-87-

assigning those procedures to the lower user ring and writing simple

transfer vectors as gates to the entrypoints, the event and timer

mechanisms were protected.

On the other hand, the design of the I/O system programs did not

provide for information hiding. This forced I/O access programs to know

the exact layout of the control blocks and to manipulate the blocks

directly because of the lack of functional abstractions. Although the

ideas in the I/O system are good (streams with high level interactions)

[Feiertag and Organick 71], the implementation made it impossible to

protect any of the features of the I/O system. Not protecting the I/O

system as a whole did not affect the "connection" between the user and

the command and control environment, however. The attachment of the

terminal was "owned" by the inner ring and thus could not be affected by

user written programs.

With the modules identified, the protected environment was

established and a scheme for making outward calls and subsequent inward

returns was designed and implemented. The functionality at this point

was that of the original Multics process; a user typed a command line

and the specified programs were found, executed, and followed by a ready

message. The only difference was that the specified command was

executing in a ring of less privilege than the "normal" user ring, which

might cause the program to trip over incorrect access problems. (19)

(19) Since users were basically not concerned with rings, and programs
only ran in a single ring, access was usually granted only to ring 4

-88-

Incorrect access to the command and control environment programs was

just what was desired, though.

Earlier 1 described how a user gets into the control environment.

Briefly repeating it here, the user presses the break or attention key

on the terminal and is then talking to the control environment.

Examining how this is actually accomplished identifies a problem on

Multics.

The break is noted by terminal control software in the supervisor.

A process interrupt is generated which causes the computation in the

user's process to cease, and a condition "quit" is signalled on the

user's stack in the PL/I defined manner. (20) Usually, the only handler

for the quit condition is a default handler called when no other

handlers have been found, and the bottom of the stack is reached looking

for one. At this point, the listener/command processor modules are

called, essentially entering the command environment. The process

interrupt acts just like an interrupt on other systems in the sense that

control is torn away from the executing procedure and is transferred

elsewhere. This process interrupt essentially implements the "stop"

mechanism of the control environment. Some of the commands the user may

type actually execute in the protected environment, as described

earlier, and perform the other control environment functions.

(the default when setting access is to choose the current ring). Thus,
initially, many access problems were encountered.

(20) See chapter six for details on signalling.

-89-

Because the control environment is in a different ring now, care

must be exercised to be sure that the quit signal is directed to that

ring. Unfortunately, in the current system, all signals, including

those arising from process interrupts, are signalled on the stack of the

current ring of execution. This means that when actually executing a

user program, the quit signal would be first signalled on the user

program stack, and then, if directed properly, would continue on the

protected environment stack. Thus, a destroyed user program stack could

prevent returning to the control environment forever I

Timers are implemented as process interrupts too. Thus an inner

ring wishing to be notified at a certain time, or after a certain amount

of chargeable execution time, would be subject to user stack integrity.

This sort of dependency obviously violates ring structure and the goals

set forward in chapters one and two.

Recently a proposal a been made to solve this problem. The

solution is simply to poll inner rings first when a process interrupt

condition is to be signalled. Thus an inner ring has "first crack" at

handling these conditions and would allow user programs to handle them

only if they were of no interest to the inner ring at that time.

The problem of user programs wanting to handle quits comes up again

here. (21) The solution proposed in chapter five is useable here as

well; the quit key can be multiplexed by some means and the proper

(21) This was discussed in chapter five.

-90-

process interrupt will be generated depending on the "severity" of the

abort that the user wanted.

Error condition handling resulted in a study of error signalling

mechanisms in detail. The results of the study are presented in chapter

six. The implementation finessed some of the problems discussed in

chapter six with special case code that handled the more common

problems.

In summary, the implementation proved that the proposed separation

could be done, and furthermore, was relatively easy given a certain good

style of coding to deal with. Simple experiments indicated that the

cost of using the implementation was approximately two to three times

that of the original system when executing a program that did nothing

more than return. For more complicated programs, the cost was

essentially a fixed overhead (of two or three times the normal program

invocation cost, as in the "nothing" program) which becomes

insignificant when compared to a PL/I compilation, for example. The

cost can be expected to decrease if more users were sharing the code,

but the amount is not determinable.

-91-

7.2 Conclusions

This thesis shows how system designers, interested in a system with

verifiable security properties, and users of system, interested in

self-protection measures, can both be satisfied by a rather simple

hardware mechanism that provides (at least) three protection

environments. Digital Equipment Corporation included three protection

environments in the PDP 11/45 (and extensions to it), but failed to

provide an ordering for all three; one environment, "kernel" mode, was

given usual supervisory privileges but the remaining two were left

unordered. This thesis discusses why the ordering of privileges is

needed and useful to facilitate the establishment of a program

development environment. In addition, this thesis shows that rings are

indeed useful, and suggests that designers should consider including a

ring-like mechanism in new systems.

-92-

7.3 Areas for Future Research

Many of the concepts discussed in this thesis constitute areas

needing more research. Primarily, the problems of the "ideal solution"

require research and experience with domain oriented systems to

determine how the various components of the user environment should be

managed. It may turn out that to solve some of the problems pointed out

in chapter two, such as the access required by a linker or debugger,

rings may be needed.

Better high level languages with more intelligent compilers can

help solve some of the problems of the programmer. More often than not

it is the problem of representation of information that causes

programmers to invent unclean techniques in their programming. CLU

[Liskov 76] might help in this respect, allowing users to define

extended type objects and procedures to manage them and preventing any

other procedures from manipulating the internal structure of the

extended type objects.

The programmer's apprentice concept [Hewitt] can be a very valuable

aid to the programmer, but this seems years off. The concept of front

end processors requires more research to decide the functionality and

level of independence from the host required by the front end to make it

suitable for use with differing machines, a collection of similar

-93-

machines (as in a network), and a combination of these two ideas. In

the future we might encapsulate the complete command and control

environment, discussed in chapter five, in a personal computer that

would determine the resouces required for any command and dynamically

acquire them from a network of resources.

-94-

Appendix A

Certification and Kernel Simplification

With the growing trend of entrusting computer based systems with

important company information and/or finances, as well as computerized

cash flow, it becomes important to many companies to have a guarantee or

proof that the system will not malfunction nor produce erroneous

results, because the system is now dealing with real dollars. Thus the

concept of certifying a system came about which meant that someone was

willing to guarantee that a system functions properly under all

circumstances and will not allow unauthorized modes of access to the

system or data. In particular, the system has to be shown to 1) not

release information to unauthorized personnel, 2) not allow unauthorized

modification of information, and 3) not allow one user to deny service

to another. It is hard to prove these types of negative attributes

about a computer system because modern systems are so large and have

many complex transactions going on within them. Many researchers are

working on developing methods that can automatically verify that a

system performs as specified, but even the specification techniques have

not yet been perfected. One problem with developing specifications is

that all the types of interactions are not fully known or understood

especially in a system which has some degree of undecidedness built into

it (i.e. multiple processes and their scheduling). Automatic program

verification techniques are stLll in their infancy and furthermore would

-95-

usually require rewriting the entire system in a new language with other

constraints. Thus, the only alternative at this time is to review the

code of the system manually and understand It fully so that it would

then be possible to decide if the system is "secure".

An approach to ease the burden on a system certifier, or even make

it possible, is to concentrate those programs dealing with security into

a security kernel and leave all other functions outside. This approach

enables a certifier to ignore all those programs outside the security

kernel, and thus leaves behind a smaller amount of code to be examined.

It is obvious that less code would be easier to review and comprehend.

Thus, any programs not dealing with the security of the system, as

described by the three points mentioned above, should be removed from

the supervisor. In keeping with this aim, Janson and Bratt have

described how the dynamic linker and name space manager can be removed

from the Multics supervisor [Janson 74, Bratt 75].

In the past, however, there was another reason why programs, which

were primarily user programs, should not be in the supervisor. This

reason was based on the "principle of least privilege"

[Saltzer and Schroeder 75] when deciding proper placement of a module.

This principle, stated simply, means that a program should only have as

much access as it needs to do its job. Otherwise programming errors in

one program may lead to the destruction or unrelated databases and other

programs, which obviously is fatal in a supervisor. (22) This guideline

-96-

was followed as a simple rule of good design; but now, certification

researchers realize that uneeded access makes it harder to certify a

system correct because it must be shown that programs do not take

advantage of extra privileges they might posess in addition to showing

that they do their job correctly. It is not unusual to discover that

good design principles also fit in well with certification work, as seen

in this thesis.

As a result of the certification work, it became apparent that the

user environment would fill up with modules that were previously

protected, and now these programs would be subject to the same

programming errors that harm other user programs. This loss of function

due to the increased fragility of the user domain is what this thesis

is about.

(22) In fact, this is the same problem that is being attacked in this
thesis, only this time the effects are more serious than a lost user
process.

-97-

BIBLIOGRAPHY

The M.I.T. Laboratory for Computer Science
was formerly known as Project MAC

[ARPANET] Roberts, L. G. and Wessler, B. D., "Computer Network
Development to Achieve Resource Sharing", Proc. AFIPS SJCC,
vol. 36, 1970, pp. 543-549.

[Bratt 75] Bratt, R. C, "Minimizing the Naming Facilities Requiring
Protection in a Computing Utility", M.I.T. Laboratory for
Computer Science Technical Report 156, Cambridge, Mass.,
September, 1975.

[Broughton] Broughton, J. M., "An Extensible Command Language for the
Multics System", B.S. and M.S. thesis at the Massachusetts
Institute of Technology, Cambridge, Mass., May, 1976.

[CLIInote 43] Snyder, A., "A Proposal for an Error Handling Mechanism",
M.I.T. Laboratory for Computer Science Computation Structures
Group, CLU Design Note #43, Cambridge, Mass., March 1975.

[CLUnote 60] Liskov, B., "Exception Handling", M.I.T. Laboratory for
Computer Science Computation Structures Group, CLU Design Note
#60, Cambridge, Mass., August, 1976.

[CTSS] The Compatible Time-Sharing System: A Programmed s Guide,
M.I.T. Press, 1966.

[DCS] Rowe, L. A., "The Distributed Computing Operating System",
University of California at Irvine, Department of Computer
Science Technical Report #66, June, 1975.

[Denning 68] Denning, P. J., "The Working Set Model for Program
Behavior", CACM 11, 5 (May 1968), pp. 323-333.

[Dennis 64] Dennis, J. B., "Program Structure in a Multi-Access
Computer", M.I.T. Laboratory for Computer Science Technical
Report 11, Cambridge, Mass., May, 1964.

[Dennis and Van Horn 65] Dennis, J. B., Van Horn, E. C, "Programming
Semantics for Multiprogrammed Computations", M.I.T. Laboratory
for Computer Science Technical Report 23, Cambridge, Mass.,
December, 1965.

-98-

[Feiertag and Organick 71] Feiertag, R. J. and Organick, E. I., "The
Multics Input/Output System", ACM 3rd Symposium on Operating
System Principles, Palo Alto, California, October, 1971,
pp. 35-41.

[Goodenough 75] Goodenough, J. B., "Structured Exception Handling",
Proceedings 2nd ACM Symposium on Principles of Programming
Languages, January 20-22, 1975, pp. 204-224.

[Gould 75] Gould, I. H., "Interactive Debugging System for a
Multiprogrammed Minicomputer", Interactive Systems, London,
England, September, 1975 (Uxbridge, Middx., England:
Online 75), pp. 451-464.

[Graham 68] Graham, R. M., "Protection in an Information Processing
Utility", CACM 11, 5 (May 1968), pp. 365-369.

[Greenberg 76] Greenberg, B. S., Private communication.

[Hewitt] Hewitt, C, "Towards a Programming Apprentice", IEEE
Transactions on Software Engineering SE-1, 1, March, 1975.

[Huber] Huber, A. R., "A Multi-Process Design of a Paging System",
M.I.T. Laboratory for Computer Science Technical Report 171,
Cambridge, Mass., December, 1976.

[IBMCP] IBM Virtual Machine Facility/370: CMS User's Guide (Release 3),
International Business Machines Corp. Order no. GC20-1819,
February, 1976.

[Janson 74] Janson, P. A., "Removing the Dynamic Linker From the
Security Kernel of a Computing Utility", M.I.T. Laboratory for
Computer Science Technical Report 132, Cambridge, Mass.,
June, 1974.

[Janson 76] Janson, P. A., "Using Type Extension to Organize Virtual
Memory Mechanisms", M.I.T. Laboratory for Computer Science
Technical Report 167, Cambridge, Mass., September, 1976.

[Jones 73] Jones, A. K., "Protection in Programmed Systems", Ph.D.
Thesis, Carnegie-Mellon University, 1973.

[Liskov 72] Liskov, B., "A Design Methodology for Reliable Software
Systems", Proc. AFIPS FJCC 41, 1972, pp. 191-199.

[Liskov 76] Liskov B., et al., "Abstract Mechanisms in CLU", M.I.T.
Laboratory for Computer Science, Computation Structures Group
Memo #144, Cambridge, Mass., April, 1976.

-99-

[Montgomery 76a] Montgomery, W. A., Private Communication.

[Montgomery 76b] Montgomery, W. A., "A Secure and Flexible Model of
Process Initiation for a Computer Utility", M.I.T. Laboratory
for Computer Science Technical Report 163, Cambridge, Mass.,
December, 1976.

[MPM] Multics Programmed s Manual - Reference Guide, Order No. AG91,
Rev. 1, Honeywell Information Systems, Waltham, Mass.,
December, 1975.

[NSW] Crocker, S. D., "The National Software Works; A New Method for
Providing Software Development Tools Using the ARPANET", Proc.
Meeting on 20 Years of Computer Science, Pisa, Italy,
July, 1975.

[Noble 69] Noble, J. M., "The Control of Exceptional Conditions in PL/1
Object Programs", Information Processing 68, North Holland
Publishing Co., Amsterdam, 1969.

[Organick 72] Organick, E. I., The Multics System: An Examination of its
Structure, M.I.T. Press, Cambridge, Mass., 1972.

[Organick 73] Organick, E. I., Computer System Organization: The
B5700/B6700 Series, Academic Press, New York, 1973.

[Parnas 72a] Parnas, D. L., "A Technique for Software Module
Specification with Examples", CACM 15, 12, pp. 1053-1058
(December 1972) .

[Parnas 72b] Parnas, D. L., "Response to Detected Errors in Well
Structured Programs", Carnegie-Mellon University Technical
Report, July, 1972b.

[PSN25] Saltzer, J. H. , Hastings, T. N. and Daley, R. C, "Unified
Control of Enabled User Traps, Including Memory Protection and
Relocation", M.I.T. Computer Center Programming Staff Note 25,
May 27, 1964.

[PSN26] Hastings, T. N., "Requirements of the FAPBUG Program", M.I.T.
Computer Center Progamming Staff Note 26, March 9, 1964.

[RCTE] Crocker, D. C. and Postel, J. B., "Remote Controlled Transmission
and Echoing TELNET Option", Arpanet Protocol Handbook, Rev. 1,
Network Information Center, Stanford Research Institute, Menlo
Park, California, April, 1976.

[Redell 74] Redell, D. D., "Naming and Protection in Extendible
Operating Systems", M.I.T. Laboratory for Computer Science
Technical Report 140, Cambridge, Mass., November, 1974.

-100-

[Reed 76a] Reed, D. P., Private Communication.

[Reed 76b] Reed, D. P., "Process Multiplexing in a Layered Operating
System", M.I.T. Laboratory for Computer Science Technical
Report 164, Cambridge, Mass., June, 1976.

[Saltzer and Schroeder 75] Saltzer, J. H. and Schroeder, M. D., "The
Protection of Information in Computer Systems", Proceedings of
the IEEE 63, 9 (September 1975), pp. 1278-1308.

[Schroeder 72] Schroeder, M. D. "Cooperation of Mutually Suspicious
Subsystems in a Computer Utility", M.I.T. Laboratory for
Computer Science Technical Report 104, Cambridge, Mass.,
September, 1972.

[Schroeder 75] Schroeder, M. D.. "Engineering a Security Kernel for
Multics", ACM 5th Symposium on Operating System Principles,
Austin, Texas, November, 1975, pp. 25-32.

[Schroeder and Saltzer 72] Schroeder, M. D. and Saltzer, J. H., "A
Hardware Architecture for Implementing Protection Rings",
CACM 15, 3 (March 1972), pp. 157-170.

[TENEX] Bobrow, D. G., et al., "TENEX, A Paged Time Sharing System for
the PDP-10", CACM 15, 3 (March 1972), pp. 135-143.

[TR123] Saltzer, J. H. ed., "Introduction to Multics", M.I.T. Laboratory
for Computer Science Technical Report 123, Cambridge, Mass.,
February, 1974.

[Yates 62] Yates, J. E., "A Time Sharing System for the PDP-1 Computer",
S.M. Thesis at the Massachusetts Institute of Technology,
Cambridge, Mass., May, 1962.

-101-

